skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoon, Susik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Proc. 2023 ACM SIGIR Int. Conf. on Research and Development in Information Retrieval (Ed.)
    Unsupervised discovery of stories with correlated news articles in real-time helps people digest massive news streams without expensive human annotations. A common approach of the existing studies for unsupervised online story discovery is to represent news articles with symbolic- or graph-based embedding and incrementally cluster them into stories. Recent large language models are expected to improve the embedding further, but a straightforward adoption of the models by indiscriminately encoding all information in articles is ineffective to deal with text-rich and evolving news streams. In this work, we propose a novel thematic embedding with an off-the-shelf pretrained sentence encoder to dynamically represent articles and stories by considering their shared temporal themes. To realize the idea for unsupervised online story discovery, a scalable framework USTORY is introduced with two main techniques, theme- and time-aware dynamic embedding and novelty aware adaptive clustering, fueled by lightweight story summaries. A thorough evaluation with real news data sets demonstrates that USTORY achieves higher story discovery performances than baselines while being robust and scalable to various streaming settings. 
    more » « less
  2. Proc. 2023 The Web Conf. (Ed.)
    Summarizing text-rich documents has been long studied in the literature, but most of the existing efforts have been made to summarize a static and predefined multi-document set. With the rapid development of online platforms for generating and distributing text-rich documents, there arises an urgent need for continuously summarizing dynamically evolving multi-document sets where the composition of documents and sets is changing over time. This is especially challenging as the summarization should be not only effective in incorporating relevant, novel, and distinctive information from each concurrent multi-document set, but also efficient in serving online applications. In this work, we propose a new summarization problem, Evolving Multi-Document sets stream Summarization (EMDS), and introduce a novel unsupervised algorithm PDSum with the idea of prototype-driven continuous summarization. PDSum builds a lightweight prototype of each multi-document set and exploits it to adapt to new documents while preserving accumulated knowledge from previous documents. To update new summaries, the most representative sentences for each multi-document set are extracted by measuring their similarities to the prototypes. A thorough evaluation with real multi-document sets streams demonstrates that PDSum outperforms state-of-the-art unsupervised multi-document summarization algorithms in EMDS in terms of relevance, novelty, and distinctiveness and is also robust to various evaluation settings. 
    more » « less
  3. Proc. 2023 The Web Conf. (Ed.)
    We present a framework SCStory for online story discovery, that helps people digest rapidly published news article streams in realtime without human annotations. To organize news article streams into stories, existing approaches directly encode the articles and cluster them based on representation similarity. However, these methods yield noisy and inaccurate story discovery results because the generic article embeddings do not effectively reflect the storyindicative semantics in an article and cannot adapt to the rapidly evolving news article streams. SCStory employs self-supervised and continual learning with a novel idea of story-indicative adaptive modeling of news article streams. With a lightweight hierarchical embedding module that first learns sentence representations and then article representations, SCStory identifies story-relevant information of news articles and uses them to discover stories. The embedding module is continuously updated to adapt to evolving news streams with a contrastive learning objective, backed up by two unique techniques, confidence-aware memory replay and prioritized-augmentation, employed for label absence and data scarcity problems. Thorough experiments on real and the latest news data sets demonstrate that SCStory outperforms existing state-of-the-art algorithms for unsupervised online story discovery. 
    more » « less
  4. Dynamic topic models (DTMs) analyze text streams to capture the evolution of topics. Despite their popularity, existing DTMs are either fully supervised, requiring expensive human annotations, or fully unsupervised, generating topic evolutions that often do not cater to a user’s needs. Further, the topic evolutions produced by DTMs tend to contain generic terms that are not indicative of their designated time steps. To address these issues, we propose the task of discriminative dynamic topic discovery. This task aims to discover topic evolutions from temporal corpora that distinctly align with a set of user-provided category names and uniquely capture topics at each time step. We solve this task by developing DynaMiTE, a framework that ensembles semantic similarity, category indicative, and time indicative scores to produce informative topic evolutions. Through experiments on three diverse datasets, including the use of a newly-designed human evaluation experiment, we demonstrate that DynaMiTE is a practical and efficient framework for helping users discover high-quality topic evolutions suited to their interests. 
    more » « less